Warranty Statement

The data, information and statements contained herein are believed to be reliable, but are not construed as a warranty representation for which AVANTI INTERNATIONAL assumes any legal responsibility. Since field conditions vary widely, users must undertake sufficient verification and testing to determine the suitability of any product or process mentioned in this or any other written material from AVANTI INTERNATIONAL for their own particular use.

NO WARRANTY OF SUITABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS MADE.

Nothing in this or any other document from AVANTI INTERNATIONAL is to be taken as permission, inducement or recommendation to practice any patented invention without a license.

Copyright© 2019 by Avanti International. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior explicit written permission from Avanti International.

Variable Pressure Application Technique
Technical Manual
V-PAT™

For Repair of Water Leakage Through Concrete
Variable Pressure Application Technique (V-PAT) Summary: Field Guide

The Check List

- Resin (accelerator for hydrophobics)
- Resin pump
- Injection Gun
- Water pump
- Injectors
- Hammer drill
- Drill bits (appropriate for substrate and injector size)
- Extra couplers
- Clean 5-gallon buckets (4-5)
- Thick-mil garbage bags to line buckets
- Clean stir sticks
- Personal Protective Equipment (PPE)
- Portable eye wash station
- Optional accessories:
 - Plastic sheeting
 - Tape
 - Oakum
 - Rags
 - Hand tools

This is a recommended guideline based on experience. Each job is unique and could require deviation from this guideline depending on job site conditions.

For the complete V-PAT process, refer to pages 3-7 of the V-PAT Technical Manual.

The Process: Quick Reference

Step 1: Identify and Clean Crack
Mechanically remove dirt, loose substrate and mineral deposits. Water can be used to help clean the area.

Step 2: Track the Crack
Injection should start from the lowest point in s vertical crack or the narrowest side of a horizontal crack.

Step 3: Drill Injection Holes at 45º Angles Toward the Crack
Start drilling at a 45º angle half the wall thickness off the crack. For example, if the wall is 12” thick, the hole should be drilled 6” away from the crack.

Step 4: Remove Debris
Flush hole with water to remove debris and dust.

Step 5: Install Injector
Place the port in the drilled hole so that the top of the sleeve is just below the concrete surface. Tighten by hand until snug, then tighten further with a ratchet and socket or open end wrench.

Step 6: Pump Water
Pump water through the port to flush the crack and to verify that the crack has been intercepted and to wet the substrate for resin reactivity. Note where the water flows out of the crack for future placement of the next injection hole.

Step 7: Pump Resin
Pump on the lowest setting possible. Some resin return out of the crack is good; this is a positive indicator of grout flow and coverage. Excessive resin flow from the crack or joint can be controlled by placing oakum into the joint or crack.

Step 8: Continue
Once the joint will no longer accept material or the resin is no longer moving along the crack or joint, it is time to drill a new injection hole. The new injection hole should be drilled on the opposite side of the crack based on the previous injection hole. Repeat steps 3-8. To view crack injection animations, visit avantigrout.com/resources/videos.

Step 9: Completion
Once the length of the crack has been filled with cured resin and the water leaks have stopped, injectors may be removed. Remove excess grout and cover the crack with patching compound to improve appearance if desired.

Step 6: Resin Injection
Resin injection for expansion joints proceeds as outlined for crack sealing. However, any pressures above the minimums required to open injector ports will seldom be needed. Special care should be taken as not to rupture the outer seal. Begin at the lowest injector and work your way up. Once pumping starts, best results are obtained by methodically proceeding to the end of the joint without stopping. Continuity helps assure uniform density of the cured foam, thus material containment and compression, as rapidly as practical.

Continue to pump each injector until relatively pure resin flows from the next port before moving up. When the last injector has been pumped, go back to the first port and work through the series again - adding a small amount of resin at each. Watch your outer seal carefully. A little resin is usually enough. After curing overnight, the resin while you clean up and start over.

NOTE: Stainless steel needles are available from Avanti for re-injection. Such a leak is inconvenient at best, and wastes time and money to repair. In extreme cases, the repair may require more material than originally used.

Step 5: Apply Outer Joint Seal
When the inner seal is in place, and flow temporally controlled, proceed to installation of the temporary outer seal. Several materials may be used, but hydraulic cement has been used successfully and economically. Remember that resin develops expansion pressures as it cures. If the outer seal is not secure, you may spring a leak during injection. Such a leak is inconvenient at best, and wastes time and resin while you clean up and start over.

Step 4: Resin Injection
Resin injection for expansion joints proceeds as outlined for crack sealing. However, any pressures above the minimums required to open injector ports will seldom be needed. Special care should be taken as not to rupture the outer seal. Begin at the lowest injector and work your way up. Once pumping starts, best results are obtained by methodically proceeding to the end of the joint without stopping. Continuity helps assure uniform density of the cured foam, thus material containment and compression, as rapidly as practical.

Continue to pump each injector until relatively pure resin flows from the next port before moving up. When the last injector has been pumped, go back to the first port and work through the series again - adding a small amount of resin at each. Watch your outer seal carefully. A little resin is usually enough. After curing overnight, the resin while you clean up and start over.

NOTE: Stainless steel needles are available from Avanti for re-injection. Such a leak is inconvenient at best, and wastes time and money to repair. In extreme cases, the repair may require more material than originally used.

Step 3: Drill Injection Holes at 45º Angles Toward the Crack
Start drilling at a 45º angle half the wall thickness off the crack. For example, if the wall is 12” thick, the hole should be drilled 6” away from the crack.

Step 2: Track the Crack
Injection should start from the lowest point in s vertical crack or the narrowest side of a horizontal crack.

Step 1: Identify and Clean Crack
Mechanically remove dirt, loose substrate and mineral deposits. Water can be used to help clean the area.

Safety Procedures

For safety procedures, please refer to the SDS. Product SDS documents can be found online at avantigrout.com.

Recommended Products for the V-PAT Technique

* Certified for use with potable water.

Basic Equipment for Sealing Fine Cracks

1. Resin
2. Accelerator (for hydrophobics)
3. Pneumatic or electric hammer drill with appropriate drill bit
4. Injectors (plastic or mechanical)
5. High pressure pump capable of a pressure ranges of 200-3,000 PSI (preferably a positive displacement design).

The pump must have a capacity of 0.50 to 2.0 gpm. It can be powered by either electric, air or hydraulics. All internal seals must be resistant to solvents such as acetone. There are a wide variety of pumps from which to choose. Call Avanti for assistance in choosing the pump to fit your application.

6. Hoses used in conjunction with pump must be moisture resistant.

7. Injection gun should be capable of 3,000 PSI and have the capability of metering the resin through the injectors to achieve variable rates (not just on or off). However, normal injection pressures are between 800 and 1,200 PSI. Pressures above 1,500 PSI significantly increase the chance of hydraulic fracturing of the concrete structure.
V-PAT and Expansion Joints

Polyurethane resin is an excellent repair material for failed waterstops and leaking expansion joints. In the past, repairing leaking expansion joints has been difficult because, by definition, an expansion joint is designed to move. However, many products used for stopping water are rigid and hard-setting; such materials either break up and fall out over time, or they bond solidly and kill the designed movement within the joint - thereby defeating its purpose.

On the other hand, most flexible sealants require a clean, dry surface (or special surface preparation) to obtain a bond. These materials can stretch, but often fail to stick because of imperfect conditions during their installation.

Expansion joints must be allowed to expand, but clean, dry surfaces are hard to find below the water table. Expansion joint repair with polyurethane resin takes full advantage of the resin’s ability to expand in confined spaces. The concrete surfaces of the joint provide confinement on two sides. The back confinement surface may be soil, but in most cases will be either the waterstop or oakum rope. Containment on the outer surface is provided temporarily by hydraulic cement. If desired, this temporary surface may be removed after resin injection.

Although the repair technique for expansion joints using polyurethane resin follows the same basic sequence as crack, a few extra steps are required:

Step 1: Remove Debris From Joint Surface
Clean away surface deposits and debris as you would for crack sealing work. Old cement patches in expansion joints defeat the purpose of the joint and should be removed. Complete removal is usually difficult and may not be practical. All loose mortar must be removed to allow enough room in the joint for the polyurethane resin to be placed in sufficient quantity. Expansion joints are designed to move. At 50% elongation, 0.10” can only become 0.15” while 0.50” can become 0.75”.
Loose beads of polysulfide or polyurethane sealants should be completely removed. Fiber or cork fillers may not require complete removal, but should usually be bored out to a depth of 6”. If a waterstop is present and its depth is less than 6”, remove everything down to it.

Step 2: Drill Injection Holes and Set Injectors
Injection holes for expansion joints should be drilled in the same manner as they would for a crack. However, if a waterstop is present, best results are usually obtained by incorporating what is left into the new seal. Thus, injection ports should not pierce the waterstop if full-depth penetration is not required; each hole should be angled to end just short of the waterstop material. When water is already flowing from the joint, removal of the failed joint filler material will sometimes allow the flow to increase. Small seepages or light flows flowing from the joint, removal of the failed joint filler material will end just short of the waterstop material. When water is already flowing from the joint, removal of the failed joint filler material will sometimes allow the flow to increase. Small seepages or light flows

A thin layer of AV-219 Fibrotite, also known as oakum, placed over the waterstop will temporarily cut off flowing water. Strips of dry, oil-free oakum may be soaked in resin and packed into the joint recess. AV-215 Resin Rod or strips of other absorbent materials may also be soaked in resin and used for packing.

Step 3: Flush Injection Holes and Joints
Joint flush procedures for expansion joints are the same as outlined previously for cracks.

Step 4: Apply Joint Seal Backing
Large volumes or heavy flows of water must be controlled during resin injection and cure. One of several materials and methods to control such flows may be selected. Some of the common choices are:

- AV-219 Fibrotite™ (Oakum)
- Expanded Gasket Placement (EGP) Technique
- Diversion Pipe Nipples
- AV-215 Resin Rod™

Background
Water leaks through cracks and joints in concrete are as old as concrete itself. The majority of cracks in concrete are going to be dynamic in nature as the concrete swells and shrink with temperature. Freeze-thaw damage, corrosion of reinforcing steel, structural weakness and even total failure can all be traced to cracking and water intrusion. Water can expand nine percent in volume in its frozen state, and internal reinforcing steel can expand seven times volume when it rusts. Besides structural damage to the concrete, water infiltration has many undesirable effects, from damaging assets or property to creating hazardous conditions.

In spite of the best efforts of the architect, engineer and contractor, structures will sometimes move in unanticipated places causing cracks. Resin can be injected into the concrete to accomplish the following purposes:

1. Restore design strength
2. Stop water leakage

If the load bearing member such as walls, beams or columns are weakened, injection of high strength epoxies may be appropriate. But not the main concern with cracking is water infiltration. Epoxies are designed to be strong with little to no elongation and chemically bond the concrete back together, which is not appropriate for a dynamic, leaking crack. The epoxy will be stronger than the concrete and will cause the concrete to crack nearby. Additionally, the majority of epoxies are water intolerant and are therefore not suitable for waterproofing.

Concrete cracks for a reason. During curing of green concrete, shrinkage and thermal cracking can occur. This type of cracking stops when the concrete is cured and is static. Another source of static cracking can be external damage (i.e. car hitting a concrete retaining wall).

The vast majority of cracking is dynamic and can vary in width and length. Expansive soils, loading and unloading of a structure, thermal cycles, freeze-thaw cycles, and rusting of internal steel all lead to cracking of concrete.

External forces are often repetitive and cause the crack to expand and contract. Usually these cracks are not a structural concern, but water infiltration through these cracks can be a serious problem.

The side of the structure where the hydrostatic load originates is called the positive side. In most cases, the positive side will also be the soil or substrate side. Any water control material has a much higher probability of success when placed on the positive side because it has the original structure for support.

This can be problematic as almost all access to water leakage will be from the negative side (i.e. inside a below-grade parking garage). Water control materials which are surface applied on the negative side have a propensity for failure. Their effectiveness depends mostly on their bond strength to the concrete and their tensile/elongation capabilities. The majority of surface applied waterproofing has limited elongation and fails just as the concrete failed amidst dynamic changes.

Here are some resin characteristics needed to effectively deal with small cracks, movements, active water flow, dampness, and debris in the crack:

- Low viscosity
- Adjustable gel times
- Bond/cure wet surfaces
- Work underwater
- Flexibility after curing
- Easy to handle
- Inert final product
- Tolerant of mix variations and field conditions
- Expansive

Avanti’s polyurethane resins are designed specifically for sealing leaks in concrete. Uncured resin grouts are liquids that have a wide range of physical properties based on their formulations. The resins are designed to create foams or gels which also have a wide array of physical properties.

V-PAT • Page 6
V-PAT Process

V-PAT crack sealing follows this simple sequence:

Step 1: Identify and Clean Crack
Examination of the crack after cleaning tells the technician where the crack goes and how wide it is. This gives a firsthand impression of how the crack will behave when grout is pumped. The surface can be cleaned mechanically. Loose debris or patches should be removed to reveal the crack. To maximize results, it is best to inject an actively leaking crack.

Step 2: Track the Crack
Injection should start from the lowest point of the crack or the narrowest side of a horizontal crack.

Step 3: Drill Injection Holes at 45º Angles Toward the Crack
The best way to determine the distance between ports is to monitor the water flow. The termination point of water travel is the best location for the next port. As the crack gets wider, the space between ports can increase. Eight to twenty-four inches will be the most common spacing. Ports should always be staggered from one side of the crack to the opposite side, making a zigzag or stitch pattern. Using injection ports on alternating sides of the crack helps to prevent spalling and helps ensure interception of the crack. No two cracks behave alike. In some instances, a crack can be sealed using few injection ports. Others may require numerous ports.

Step 4: Remove Debris
Flush hole with water to remove any debris and dust.

Step 5: Install Injectors
Place the port in the drilled hole so that the top of the sleeve is just below the concrete surface. Tighten by hand until snug, then tighten further with a ratchet and socket or open end wrench.

Step 6: Pump Water
The water pump to flush the port and crack. Flushing the crack with water prior to resin injection is very important. The water flush removes debris and drilling dust, and improves subsequent penetration of the resin. Water left in the concrete pores will aid in curing the resin. The flushing operation also helps the technician determine how the crack will behave during resin injection. Flush water should flow from the crack face.

Step 7: Pump Resin
Flush the pump with solvent to remove moisture that might be in the crack. If water is dripping from overhead - a cover that you can see through is best. Begin the injection of resin at the lowest point on a vertical crack or at the narrowest side of the horizontal crack.

Step 8: Continue Injection
As resin begins to flow, the technician should carefully watch:

1. The crack to measure resin flow along the crack
2. The whip line for pump pulsations indicate resin flow
3. The injection gun’s gauge to monitor actual pressure in the crack

Holding the whip line allows the operator to feel the pump pulsations. A common pump for polyurethane resin applications is an airless paint sprayer. As resistance increases against the fluctuating diaphragm in the pump head, the rate of pumping will decrease proportionately. The technician can use hose vibration and the sound of the pump to determine how well material is flowing into the crack. If the crack surface exhibits immediate free flow of resin, use Oakum to stop the free flow. The resin will react with the water and expand rapidly. The resulting foam in the confinement of the crack will be a dense, rubber product. A small amount of leakage is beneficial because it shows the extent of resin travel and is good insurance that the crack is well filled. Under proper pumping conditions, the following signs will be observed in the order listed:

1. Water displaced from the crack by the resin
2. Water and resin mix (foamy) appearing at the crack
3. Pure resin from the crack

Step 9: Completion
Once the crack is completely sealed with cured resin, injectors can be removed and clean-up started.
V-PAT Process

The best way to determine the distance between ports is to monitor the water flow. The termination point of water travel is the best location for the next port. As the crack gets wider, the space between ports can increase. Eight to twenty-four inches will be the most common spacing. Ports should always be staggered from one side of the crack to the opposite side, making a zigzag or stitch pattern. Using injection ports on alternating sides of the crack helps to prevent spalling and helps ensure interception of the crack. No two cracks behave alike. In some instances, a crack can be sealed using few injection ports. Others may require numerous ports.

Step 4: Remove Debris

Flush hole with water to remove any debris and dust.

Step 5: Install Injectors

Place the port in the drilled hole so that the top of the sleeve is just below the concrete surface. Tighten by hand until snug, then tighten further with a ratchet and socket or open end wrench.

Step 6: Pump Water

Use the water pump to flush the port and crack. Flushing the crack with water prior to resin injection is very important. The water flush removes debris and drilling dust, and improves subsequent penetration of the resin. Water left in the concrete pores will aid in curing the resin. The flushing operation also helps the technician determine how the crack will behave during resin injection. Flush water should flow from the crack face.

The same kind of pump used for water flushing can also be used to inject resin into the crack. However, special caution is required if the same pump is used for flushing as well as resin injection. All water must be completely removed from the pump before charging with resin. Failure to remove all the water will cause resin to cure in the pump. The pump may not be permanently damaged, but can lead to extended down time. Avanti recommends a separate pump to be used for each operation so that clean-up and the possibility of mistakes is minimized.

The flow of flush water into the crack is critical. If water does not travel under pressure from the injection hole through the crack, then there is no connectivity and no need to inject resin into that port. The injector should be removed from such locations and the hole plugged with quick-setting cement. Do not try and pump a blind or non-connective hole.

You will need to raise pressure and volume levels slowly. Flush the crack with the highest flow volume that is practical without exceeding permissible pressure. For cold weather applications (50ºF or 10ºC and below), please contact Avanti for technical support. Epoxy resin injection sometimes calls for the use of muratic or hydrochloric acid as flushing agents. Do not use these materials when working with urethane resins. Such agents are difficult to completely remove from the crack and are not needed by the resin system.

Step 7: Pump Resin

Flush the pump with solvent to remove moisture that might be in the pump or hose. When all preparation work is completed, charge the pump, hose, and gun. Pull the trigger on the gun to allow all solvent to pass into a trash bucket while watching for the resin to appear. Keep the resin covered in wet environments, especially if water is dripping from overhead - a cover that you can see through is best. Begin the injection of resin at the lowest point on a vertical crack or at the narrowest side of the horizontal crack.

The same kind of pump used for water flushing can also be used to inject resin into the crack. However, special caution is required if the same pump is used for flushing as well as resin injection. All water must be completely removed from the pump before charging with resin. Failure to remove all the water will cause resin to cure in the pump. The pump may not be permanently damaged, but can lead to extended down time. Avanti recommends a separate pump to be used for each operation so that clean-up and the possibility of mistakes is minimized.

The flow of flush water into the crack is critical. If water does not travel under pressure from the injection hole through the crack, then there is no connectivity and no need to inject resin into that port. The injector should be removed from such locations and the hole plugged with quick-setting cement. Do not try and pump a blind or non-connective hole.

You will need to raise pressure and volume levels slowly. Flush the crack with the highest flow volume that is practical without exceeding permissible pressure. For cold weather applications (50ºF or 10ºC and below), please contact Avanti for technical support. Epoxy resin injection sometimes calls for the use of muratic or hydrochloric acid as flushing agents. Do not use these materials when working with urethane resins. Such agents are difficult to completely remove from the crack and are not needed by the resin system.

Step 7: Pump Resin

Flush the pump with solvent to remove moisture that might be in the pump or hose. When all preparation work is completed, charge the pump, hose, and gun. Pull the trigger on the gun to allow all solvent to pass into a trash bucket while watching for the resin to appear. Keep the resin covered in wet environments, especially if water is dripping from overhead - a cover that you can see through is best. Begin the injection of resin at the lowest point on a vertical crack or at the narrowest side of the horizontal crack.

Patience is important in resin injection work - slow is better. Always start injecting with the pump set at the lowest setting.

Step 8: Continue Injection

When the resin is no longer traveling along the crack, drill a new port (Step 2).

Step 9: Completion

Once the crack is completely sealed with cured resin, injectors can be removed and clean-up started.
Polyurethane resin is an excellent repair material for failed waterstops and leaking expansion joints. In the past, repairing leaking expansion joints has been difficult because, by definition, an expansion joint is designed to move. However, many products used for stopping water are rigid and hard-setting; such materials either break up and fail out over time, or they bond solidly and kill the designed movement within the joint - thereby defeating its purpose.

On the other hand, most flexible sealants require a clean, dry surface (or special surface preparation) to obtain a bond. These materials can stretch, but often fail to stick because of imperfect conditions during their installation.

Expansion joints must be allowed to expand, but clean, dry surfaces are hard to find below the water table.

Expansion joint repair with polyurethane resin takes full advantage of the resin’s ability to expand in confined spaces. The concrete surfaces of the joint provide confinement on two sides. The back of confinement may be soil, but in most cases will be either the waterstop or oakum rope. Containment on the outer surface is provided temporarily by hydraulic cement. If desired, this temporary surface may be removed after resin injection.

Although the repair technique for expansion joints using polyurethane resin follows the same basic sequence as crack, a few extra steps are required:

Step 1: Remove Debris From Joint Surface
Clean away surface deposits and debris as you would for crack sealing work. Old cement patches in expansion joints defeat the purpose of the joint and should be removed. Complete removal is usually difficult and may not be practical. All loose mortar must be removed to allow enough room in the joint for the polyurethane resin to be placed in sufficient quantity. Expansion joints are designed to move. At 50% elongation, 0.10" can only become 0.15" while 0.50" can become 0.75". Loose beads of polysulfide or polyurethane sealants should be completely removed. Fiber or cork fillers may not require complete removal, but should usually be bored out to a depth of 6". If a waterstop is present and its depth is less than 8", remove everything down to it.

Step 2: Drill Injection Holes and Set Injectors
Injection holes for expansion joints should be drilled in the same depth of 6”. If a waterstop is present and its depth is less than 8”, require complete removal, but should usually be cleaned out to a depth just short of the waterstop material. When water is already flowing from the joint, removal of the failed joint filler material will sometimes allow the flow to increase. Small seepages or light flows can be ignored because they will be reduced by the reaction with the polyurethane resin.

Step 3: Flush Injection Holes and Joints
Joint flush procedures for expansion joints are the same as outlined previously for cracks.

Step 4: Apply Joint Seal Backing
Large volumes or heavy flows of water must be controlled during resin injection and cure. One of several materials and methods to control such flows may be selected. Some of the common choices are:

- AV-219 Fibrotite™ (Oakum)
- Expanded Gasket Placement (EGP) Technique
- Diversion Pipe Nipples
- AV-215 Resin Rod™

A thin layer of AV-219 Fibrotite, also known as oakum, placed over the waterstop will temporarily cut off flowing water. Strips of dry, oil-free oakum may be soaked in resin and packed into the joint recess. AV-215 Resin Rod or strips of other absorbent materials may also be soaked in resin and used for packing. Such strips of materials are sometimes called expanding gaskets, and the process is called the Expanded Gasket Placement Technique (EGP). The resin combines with water to expand and cure rapidly, thus forming a quick molded-in-place gasket seal. For more information on the step-by-step process of the EGP Technique, please visit www.avantigrout.com/resources/videos.

If leak flows are high, one or more pieces of small diameter pipe can be embedded in the packing material. These nipples serve to relieve pressure and divert flow while the packing seal solidifies. Once the seal has cured, a small amount of resin injected through the nipples will rapidly complete the seal. The pipe nipples can then be removed.

Background
Water leaks through cracks and joints in concrete are as old as concrete itself. The majority of cracks in concrete are going to be dynamic in nature as the concrete swells and shrinks with temperature. Freeze-thaw damage, corrosion of reinforcing steel, structural weakness and even total failure can all be traced to cracking and water intrusion. Water can expand nine percent in volume in its frozen state, and internal reinforcing steel can expand seven times volume when it rusts. Besides structural damage to the concrete, water infiltration has many undesirable effects from damaging assets or property to creating hazardous conditions.

In spite of the best efforts of the architect, engineer and contractor, structures will sometimes move in unanticipated places causing cracks. Resin can be injected into the concrete to accomplish the following purposes:

1. Restore design strength
2. Stop water leakage

If the load bearing member such as walls, beams or columns are weakened, injection of high strength epoxies may be appropriate. But not the main concern with cracking is water infiltration. Epoxies are designed to be strong with little to no elongation and chemically bond the concrete back together, which is not appropriate for a dynamic, leaking crack. The epoxy will be stronger than the concrete and will cause the concrete to crack nearby. Additionally, the majority of epoxies are water intolerant and are therefore not suitable for waterproofing.

Concrete cracks for a reason. During curing of green concrete, shrinkage and thermal cracking can occur. This type of cracking stops when the concrete is cured and is static. Another source of static cracking can be external damage (i.e. car hitting a concrete retaining wall). The vast majority of cracking is dynamic and can vary in width and length. Expansive soils, loading and unloading of a structure, thermal cycles, freeze-thaw cycles, and rusting of internal steel all lead to cracking of concrete.

External forces are often repetitive and cause the crack to expand and contract. Usually these cracks are not a structural concern, but water infiltration through these cracks can be a serious problem.

The side of the structure where the hydrostatic load originates is called the positive side. In most cases, the positive side will also be the soil or substrate side. Any water control material has a much higher probability of success when placed on the positive side because it has the original structure for support.

This can be problematic as almost all access to water leakage will be from the negative side (i.e. inside a below-grade parking garage). Water control materials which are surface applied on the negative side have a propensity for failure. Their effectiveness depends mostly on their bond strength to the concrete and their tensile/elongation capabilities. The majority of surface applied waterproofing has limited elongation and fails just as the concrete failed amidst dynamic changes.

How can you work from the negative side and yet place a water stop material on the positive side? Here are some resin characteristics needed to effectively deal with small cracks, movements, active water flow, dampness, and debris in the crack:

- Low viscosity
- Adjustable gel times
- Bond/cure wet surfaces
- Work underwater
- Flexibility after curing
- Easy to handle
- Inert final product
- Tolerant of mix variations and field conditions
- Expansive

Avanti’s polyurethane resins are designed specifically for sealing leaks in concrete. Uncured resin gels are liquids that have a wide range of physical properties based on their formulations. The resins are designed to create foams or gels which also have a wide array of physical properties.
Variable Pressure Application Technique (V-PAT) Summary: Field Guide

The Check List

- Resin (accelerator for hydrophobics)
- Resin pump
- Injection Gun
- Water pump
- Injectors
- Hammer drill
- Drill bits (appropriate for substrate and injector size)
- Extra couplers
- Clean 5-gallon buckets (4-5)
- Clean stir sticks
- Personal Protective Equipment (PPE)
- Portable eye wash station

Optional accessories:
- Plastic sheeting
- Tape
- OaKum
- Rags
- Hand tools

This is a recommended guideline based on experience. Each job is unique and could require deviation from this guideline depending on job site conditions.

For the complete V-PAT process, refer to pages 3-7 of the V-PAT Technical Manual.

The Process: Quick Reference

Step 1: Identify and Clean Crack
Mechanically remove dirt, loose substrate and mineral deposits. Water can be used to help clean the area.

Step 2: Track the Crack
Injection should start from the lowest point in a vertical crack or the narrowest side of a horizontal crack.

Step 3: Drill Injection Holes at 45º Angles Toward the Crack
Start drilling at a 45º angle half the wall thickness off the crack. For example, if the wall is 12” thick, the hole should be drilled 6” away from the crack.

Step 4: Remove Debris
Flush hole with water to remove debris and dust.

Step 5: Install Injector
Place the port in the drilled hole so that the top of the sleeve is just below the concrete surface. Tighten by hand until snug, then tighten further with a ratchet and socket or open end wrench.

Step 6: Pump Water
Pump water through the port to flush the crack and to verify that the crack has been intercepted and to wet the substrate for resin reactivity. Note where the water flows out of the crack for future placement of the next injection hole.

Step 7: Pump Resin
Pump on the lowest setting possible. Some resin return out of the crack is good; this is a positive indicator of grout flow and coverage. Excessive resin flow from the crack or joint can be controlled by placing oakum into the joint or crack.

Step 8: Continue
Once the joint will no longer accept material or the resin is no longer moving along the crack or joint, it is time to drill a new injection hole. The new injection hole should be drilled on the longer moving along the crack or joint, it is time to drill a new injection hole. The new injection hole should be drilled on the

Step 9: Completion
Once the length of the crack has been filled with cured resin and the water leaks have stopped, injectors may be removed. Remove excess grout and cover the crack with patching compound to improve appearance if desired.

Step 5: Apply Outer Joint Seal
Continue to pump each injector until relatively pure resin flows from the injection hole. The new injection hole should be drilled on the

Step 6: Resin Injection
Resin injection for expansion joints proceeds as outlined for crack sealing. However, any pressures above the minimums required to open injector ports will seldom be needed. Special care should be taken as not to rupture the outer seal. Begin at the lowest injector and work your way up. Once pumping starts, best results are obtained by methodically proceeding to the end of the joint without stopping. Continuity helps assure uniform density of the cured foam, thus material containment and compression, as rapidly as practical.

Continue to pump each injector until relatively pure resin flows from the next port before moving up. When the last injector has been pumped, go back to the first port and work through the series again - adding a small amount of resin at each. Watch your outer seal carefully. A little resin is usually enough. After curing overnight, the expansion joint is "better than new" and is ready for service.

NOTE: Stainless steel needles are available from Avanti for re-injection of any EGP, resin rod, or double-dam method seals which may need additional resin.

Step 7: Outer Joint Seal
Sealing. However, any pressures above the minimums required to open injector ports will seldom be needed. Special care should be taken as not to rupture the outer seal. Begin at the lowest injector and work your way up. Once pumping starts, best results are obtained by methodically proceeding to the end of the joint without stopping. Continuity helps assure uniform density of the cured foam, thus material containment and compression, as rapidly as practical.

Continue to pump each injector until relatively pure resin flows from the next port before moving up. When the last injector has been pumped, go back to the first port and work through the series again - adding a small amount of resin at each. Watch your outer seal carefully. A little resin is usually enough. After curing overnight, the expansion joint is "better than new" and is ready for service.

NOTE: Stainless steel needles are available from Avanti for re-injection of any EGP, resin rod, or double-dam method seals which may need additional resin.

Recommended Products for the V-PAT Technique

* Certified for use with potable water

Basic Equipment for Sealing Fine Cracks

1. Resin
2. Accelerator (for hydrophobics)
3. Pneumatic or electric hammer drill with appropriate drill bit
4. Injectors (plastic or mechanical)
5. High pressure pump capable of a pressure ranges of 200-3,000 PSI (preferably a positive displacement design).

The pump must have a capacity of 0.50 to 2.0 gpm. It can be powered by either electric, air or hydraulics. All internal seals must be resistant to solvents such as acetone. There are a wide variety of pumps from which to choose. Call Avanti for assistance in choosing the pump to fit your application.

6. Hoses used in conjunction with pump must be moisture resistant.

7. Injection gun should be capable of 3,000 PSI and have the capability of metering the resin through the injectors to achieve variable rates (not just on or off). However, normal injection pressures are between 800 and 1,200 PSI. Pressures above 1,500 PSI significantly increase the chance of hydraulic fracturing of the concrete structure.

Safety Procedures

For safety procedures, please refer to the SDS. Product SDS documents can be found online at avantigrout.com.
Warranty Statement

The data, information and statements contained herein are believed to be reliable, but are not construed as a warranty representation for which AVANTI INTERNATIONAL assumes any legal responsibility. Since field conditions vary widely, users must undertake sufficient verification and testing to determine the suitability of any product or process mentioned in this or any other written material from AVANTI INTERNATIONAL for their own particular use.

NO WARRANTY OF SUITABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS MADE.

Nothing in this or any other document from AVANTI INTERNATIONAL is to be taken as permission, inducement or recommendation to practice any patented invention without a license.

Copyright© 2019 by Avanti International. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior explicit written permission from Avanti International.